Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Advanced Tire to Vehicle Connectivity for Safety and Fuel Economy of Automated Heavy-Duty Trucks

2022-03-29
2022-01-0881
Safety, fuel economy and uptime are key requirements for the operation of heavy-duty line-haul trucks within a fleet. With the penetration of connectivity and automation technologies, energy optimal and safe operation of the trucks are further improved through Advanced Driver Assistance System (ADAS) features and automated technologies as in truck platooning. Understanding the braking capability of the vehicle is very important for optimal ADAS and platooning control system design and integration. In this paper, the importance of tire connectivity and tire conditions on truck stopping distance are demonstrated through testing. The test data is further utilized to develop tire models for integration in an optimal vehicle automation for platooning. New ways to produce and use the tire related information in real-time optimal control of platooning trucks are proposed and the contribution of tire information in fuel economy is quantified through simulations.
Technical Paper

API CI-4: The First Oil Category for Diesel Engines Using Cooled Exhaust Gas Recirculation

2002-05-06
2002-01-1673
This oil category was driven by two new cooled exhaust gas recirculation (EGR) engine tests operating with 15% EGR, with used oil soot levels at the end of the test ranging from 6 to 9%. These tests are the Mack T-10 and Cummins M11 EGR, which address ring, cylinder liner, bearing, and valve train wear; filter plugging, and sludge. In addition to these two new EGR tests, there is a Caterpillar single-cylinder test without EGR which measures piston deposits and oil consumption control using an articulated piston. This test is called the Caterpillar 1R and is included in the existing Global DHD-1 specification. In total, the API CI-4 category includes eight fired-engine tests and seven bench tests covering all the engine oil parameters. The new bench tests include a seal compatibility test for fresh oils and a low temperature pumpability test for used oils containing 5% soot. This paper provides a review of the all the tests, matrix results, and limits for this new oil category.
Technical Paper

A Fundamental Consideration on NOx Adsorber Technology for DI Diesel Application

2002-10-21
2002-01-2889
Diesel engines are far more efficient than gasoline engines of comparable size, and emit less greenhouse gases that have been implicated in global warming. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15 ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same low emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulation. Achieving such low emissions cannot be done through engine development and fuel reformulation alone, and requires application of NOx and particulate matter (PM) aftertreatment control devices. There is a widespread consensus that NOx adsorbers and particulate filter are required in order for diesel engines to meet the 2007 emissions regulations for NOx and PM. In this paper, the key exhaust characteristics from an advanced diesel engine are reviewed.
Technical Paper

A Full-Cycle Multi-Zone Quasi-Dimensional Direct Injection Diesel Engine Model Based on a Conceptual Model Developed from Imaging Experiments

2017-03-28
2017-01-0537
A quasi-dimensional model for a direct injection diesel engine was developed based on experiments at Sandia National Laboratory. The Sandia researchers obtained images describing diesel spray evolution, spray mixing, premixed combustion, mixing controlled combustion, soot formation, and NOx formation. Dec [1] combined all of the available images to develop a conceptual diesel combustion model to describe diesel combustion from the start of injection up to the quasi-steady form of the jet. The end of injection behavior was left undescribed in this conceptual model because no clear image was available due to the chaotic behavior of diesel combustion. A conceptual end-of-injection diesel combustion behavior model was developed to capture diesel combustion throughout its life span. The compression, expansion, and gas exchange stages are modeled via zero-dimensional single zone calculations.
Technical Paper

A Computational Procedure for Predicting Nitrogen Oxide Emissions from Diesel Engines

2006-04-03
2006-01-0240
The calculation of the Nitrogen Oxide (NO) formation emitted from diesel engines usually involve direct integration of a set of nitrogen chemistry elementary reactions that involve formation and destruction of NO. The primary hydrocarbon chemistry is usually simplified as long as the main species and heat release are predicted correctly. The result of the integration is the net NO formation rate evaluated using the local concentrations and thermodynamic parameters. In the present work a method for calculating NO emissions from diesel engines is proposed that takes into consideration the effect of residence time as a measure of turbulence effects on chemistry. This is based on the assumption that for mixing-limited conditions the turbulent eddy turn-over time can be taken as a characteristic reaction residence time. The proposed procedure depends on a detailed investigation of the primary hydrocarbon combustion chemistry decoupled from the flow-field prediction.
Technical Paper

3-D Multiphase Flow Simulation of Coolant Filling and Deaeration Processes in an Engine Coolant System

2024-01-16
2024-26-0310
The thermal performance of an engine coolant system is efficient when the engine head temperature is maintained within its optimum working range. For this, it is desired that air should not be entrapped in the coolant system which can lead to localized hot spots at critical locations. However, it is difficult to eliminate the trapped air pockets completely. So, the target is to minimize the entrapped air as much as possible during the coolant filling and deaeration processes, especially in major components such as the radiator, engine head, pump etc. The filling processes and duration are typically optimized in an engine test stand along with design changes for augmenting the coolant filling efficiency. However, it is expensive and time consuming to identify air entrapped locations in tests, decide on the filling strategy and make the design changes in the piping accordingly.
X